Công Thức Tính Thể Tích Khối Trụ Tròn Xoay Và Bài Tập

1. Khối trụ tròn xoay là gì?

Trong không gian, khi quay một hình phẳng quanh một trục cố định ta sẽ được một khối hình gọi là khối tròn xoay.

Giới thiệu khối trụ tròn xoay và thể tích khối trụ tròn xoay

Hình trụ là hình tròn xoay được sinh ra bởi bốn cạnh của hình chữ nhật khi quay quanh trục cố định chính là đường trung bình của hình chữ nhật đó.

Khối trụ chính là hình trụ và phần bên trong của hình trụ đó.

Thể tích khối trụ tròn xoay là lượng không gian mà hình trụ chiếm.

2. Công thức tính thể tích khối trụ tròn xoay

Muốn tính thể tích khối trụ tròn xoay, ta lấy chiều cao khối trụ nhân với bình phương độ dài của bán kính hình tròn bán kính hình trụ và số pi. Nói cách khác, thể tích khối trụ tròn xoay chính là tích diện tích mặt đáy và chiều cao.

$V = pi.r^{2}.h$

Trong đó:

  • V là thể tích của khối trụ

  • r là bán kính mặt đáy khối trụ

  • h là chiều cao khối trụ (khoảng cách 2 đáy)

  • $pi$ là hằng số

  • Đơn vị thể tích: m3

Công thức tính thể tích khối trụ tròn xoay

Có thể thấy công thức thể tích khối trụ tròn xoay có điểm tương đồng với công thức tính thể tích khối lăng trụ vì đều lấy diện tích đáy nhân chiều cao.

3. Các dạng bài tập về thể tích của khối trụ tròn xoay từ cơ bản đến nâng cao

Trong công thức tính thể tích khối trụ tròn xoay có ba đại lượng là thể tích, bán kính đáy và chiều cao, cũng chính là đường sinh của khối trụ. Từ đó ta có ba dạng bài tập như sau:

3.1. Dạng 1: Tìm bán kính đáy của khối trụ tròn xoay

Phương pháp giải:

  • Nếu đề bài cho đường kính mặt đáy tròn, chỉ việc chia 2 để được bán kính đáy.

  • Nếu đề cho chu vi mặt đáy, lấy chu vi chia $2pi$.

Ví dụ: Cho khối trụ tròn xoay có thể tích bằng $pi a^{3}$, chiều cao là h = 2a. Tìm bán kính đáy r của khối trụ đó?

Lời giải:

Bài tập tính thể tích của khối trụ tròn xoay

Áp dụng công thức tính thể tích: V=.r2.h

Suy ra: $r = sqrt{frac{V}{pi h}} = frac{pi a^{3}}{pi .2a} = frac{a sqrt{2}}{2}$

Vậy bán kính đáy của khối trụ tròn xoay đó là: $frac{asqrt{2}}{2}$

3.2. Dạng 2: Tìm diện tích đáy tròn

Để tìm diện tích đáy tròn của khối trụ, ta sử dụng công thức tính diện tích hình tròn $(pi.r^{2})$.

Ví dụ: Cho khối trụ tròn xoay có diện tích toàn phần gấp 2 lần diện tích xung quanh và có bán kính đáy bằng 6cm. Tính thể tích thể tích khối trụ đó?

Giải:

Vì diện tích toàn phần của khối trụ gấp 2 lần diện tích xung quanh của nó nên:

$2.2.pi.r.h = 2.pi.r.h.(r + h)$

$Rightarrow 2.h = 6 + h Rightarrow h = 6 (cm)$

$Rightarrow V = pi.r^{2}.h = pi.6^{2}.6 = sim 678,6 cm^{3}$

Vậy thể tích của khối trụ tròn xoay là 678,6 cm3

3.3. Dạng 3: Tìm chiều cao của hình trụ

Trong một vài dạng bài tập có thể sẽ cho độ dài đường chéo đến hình tròn đáy, ta có thể sử dụng định lý Pytago để tính chiều cao của hình trụ.

Ví dụ: Cho khối trụ có thể tích bằng $12pi$, chu vi đáy là $2pi$. Thể tích của khối trụ đó là bao nhiêu?

Lời giải:

Bán kính đáy của khối trụ tròn xoay đó là:

$r = frac{2pi}{2pi} = 1$

Chiều cao của khối trụ là:

$h = frac{V}{pi r^{2}} = frac{12pi}{pi 1^{2}} = 12$

Vậy chiều cao của khối trụ là 12.

4. Một số bài tập tính thể tích khối trụ tròn xoay (kèm lời giải chi tiết)

Bài 1: Cho hình trụ tròn xoay có hai đáy là hai đường tròn có tâm O và O’, A và B lần lượt nằm trên hai đường tròn đó. Biết rằng AB tạo với trục OO’ góc $alpha$ và AB = a. Tính theo $alpha$ và a thể tích khối trụ, biết khoảng cách giữa AB và OO’ bằng d.

Lời giải:

Một số bài tập tính thể tích khối trụ tròn xoay

Gọi điểm C là đường chiếu của điểm A lên đường tròn tâm O’, I là trung điểm của BC. Góc giữa AB và OO’ là góc BAC $Rightarrow$ Góc $BAC = alpha$

Bài tập tính thể tích khối trụ tròn xoay và giải chi tiết

Bài 2: Cho khối trụ tròn xoay có đáy là hình tròn ngoại tiếp của tam giác đều cạnh a. Biết chiều cao khối trụ là 3a. Tính thể tích khối trụ tròn xoay đó?

Lời giải:

Bán kính đáy của khối trụ là: $r = frac{asqrt{3}}{3}$

Thể tích của khối trụ đó là $V = pi.r^{2}.h = pi.(frac{a^{3}}{3})^{2}.3a = pi.a^{3}$

Vậy thể tích của khối trụ tròn xoay là $V = pi.a^{3}$

Bài 3: Cho khối trụ có chu vi đáy bằng 20cm, diện tích xung quanh khối trụ bằng 14cm2. Tính thể tích và chiều cao của khối trụ?

Lời giải:

Vì chu vi đáy bằng 20cm, diện tích xung quanh khối trụ bằng 14cm2 nên:

$S_{xq} = 2pi rh = 20h = 14 Rightarrow h = frac{14}{20} = 0,7 (cm)$

$2pi r = 20 Rightarrow r sim 3,18 (cm)$

Thể tích của khối trụ đó là

$V = pi.r^{2}.h = 219,91 cm^{3}$

Vậy thể tích của khối trụ tròn xoay là V = 219,91cm3

Ngoài ra, các em có thể tham khảo thêm những cách giải nhanh và thú vị hơn trong video bài giảng của thầy Tài về thể tích khối tròn xoay, cùng VUIHOC học nhé!

Trên đây là toàn bộ lý thuyết về khối trụ tròn xoay. Hy vọng sau bài viết này các em đã nắm được định nghĩa, công thức tính thể tích khối trụ tròn xoay và biết cách giải các bài tập liên quan đến hình trụ. Đừng quên truy cập Vuihoc.vn và đăng ký tài khoản để học thêm nhiều công thức toán hình 12 bổ ích khác nhé!

>>> Xem thêm:

  • 12 Công thức tính thể tích khối chóp kèm ví dụ cụ thể
  • Công thức tính thể tích khối lăng trụ tam giác đều
  • Công thức tính thể tích khối cầu nhanh và chính xác nhất
  • Công thức tính thể tích khối tròn xoay và bài tập vận dụng
  • Công thức tính thể tích khối trụ tròn xoay và bài tập
  • Công thức tính thể tích khối nón và bài tập