Skip to content

Link Tài Liệu Giáo Dục

  • Home
  • Futurelink
  • Tài liệu
    • Toán học
    • Tiếng Anh
    • Khoa học
    • Giảng dạy
    • Hướng dẫn
  • Tin tổng hợp
  • Home
  • Tin tổng hợp
  • Cách tìm giá trị lớn nhất (GTLN) và giá trị nhỏ nhất (GTNN) của biểu thức – Toán lớp 9

Cách tìm giá trị lớn nhất (GTLN) và giá trị nhỏ nhất (GTNN) của biểu thức – Toán lớp 9

Posted on Tháng Sáu 11, 2022 By admin Không có bình luận ở Cách tìm giá trị lớn nhất (GTLN) và giá trị nhỏ nhất (GTNN) của biểu thức – Toán lớp 9
Tin tổng hợp

Bài viết này sẽ chia sẻ với các em một số cách tìm giá trị lớn nhất (GTLN, Max) và giá trị nhỏ nhất (GTNN, Min) của biểu thức (biểu thức đại số chứa dấu căn, chứa dấu giá trị tuyệt đối,…) qua một số bài tập minh họa cụ thể.

° Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức đại số:

* Phương pháp: (đối với biểu thức 1 biến số)

– Muốn tìm giá trị lớn nhất hay giá trị nhỏ nhất của một biểu thức ta có thể biến đổi biểu thức thành dạng: A2(x) + const ;(A biểu thức theo x, const = hằng số).

* Ví dụ 1: Cho biểu thức: A = x2 + 2x – 3. Tìm GTNN của A.

° Lời giải:

– Ta có: A = x2 + 2x – 3 = x2 + 2x + 1 – 1 – 3 = (x + 1)2 – 4

– Vì (x + 1)2 ≥ 0 ⇒ (x + 1)2 – 4 ≥ -4

⇒ A ≥ – 4 dấu bằng xảy ra, tức A = – 4 ⇔ x + 1 = 0 ⇔ x = -1

– Kết luận: Amin = -4 khi và chỉ khi x = -1.

* Ví dụ 2: Cho biểu thức: A = -x2 + 6x – 5. Tìm GTLN của A.

° Lời giải:

– Ta có: A = -x2 + 6x – 5 = -x2 + 6x – 9 + 9 – 5 = -(x – 3)2 + 4 = 4 – (x – 3)2

– Vì (x – 3)2 ≥ 0 ⇒ -(x – 3)2 ≤ 0 ⇒ 4 – (x – 3)2 ≤ 4

⇒ A ≤ 4 dấu bằng xảy ra, tức A = 4 ⇔ x – 3 = 0 ⇔ x = 3

– Kết luận: Amax = 4 khi và chỉ khi x = 3.

* Ví dụ 3: Cho biểu thức:

– Tìm x để Amax; tính Amax =?

° Lời giải:

– Để A đạt gía trị lớn nhất thì biểu thức (x2 + 2x + 5) đạt giá trị nhỏ nhất.

– Ta có: x2 + 2x + 5 = x2 + 2x + 1 + 4 = (x + 1)2 + 4

– Vì (x + 1)2 ≥ 0 nên (x + 1)2 + 4 ≥ 4

dấu “=” xảy ra khi và chỉ khi x + 1 = 0 ⇔ x = -1

Vậy

Cách tìm giá trị lớn nhất (GTLN) và giá trị nhỏ nhất (GTNN) của biểu thức - Toán lớp 9

° Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức chứa dấu căn:

* Phương pháp: (đối với biểu thức 1 biến số)

– Cũng tương tự như cách tìm ở phương pháp trên, vận dụng tính chất của biểu thức không âm như:

hoặc

– Dấu “=” xảy ra khi A = 0.

* Ví dụ 1: Tìm GTNN của biểu thức:

° Lời giải:

– Ta thấy:

Vì (x – 1)2 ≥ 0 ⇒ 2(x – 1)2 ≥ 0 ⇒ 2(x – 1)2 + 3 ≥ 3

nên dấu “=” xảy ra khi x – 1 = 0 ⇔ x = 1

* Ví dụ 2: Tìm GTLN của biểu thức:

° Lời giải:

– Ta có:

Vì (x – 1)2 ≥ 0 ⇒ -3(x – 1)2 ≤ 0 ⇒ -3(x – 1)2 + 5 ≤ 5

nên dấu “=” xảy ra khi x – 1 = 0 ⇔ x = 1

* Ví dụ 3: Tìm GTLN của biểu thức:

° Lời giải:

– Ta có:

nên giá trị nhỏ nhất của B là đạt được khi:

* Ví dụ 4: Tìm GTLN của biểu thức:

° Lời giải:

– Điều kiện: x≥0

– Để A đạt giá trị lớn nhất thì đạt giá trị nhỏ nhất

– Ta có:

Lại có:

Dấu”=” xảy ra khi

– Kết luận: GTLN của A = 4/7 khi x = 1/4.

° Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối:

* Phương pháp: (đối với biểu thức 1 biến số)

– Bài toán này cũng chủ yếu dựa vào tính không âm của trị tuyệt đối.

* Ví dụ 1: Tìm GTLN của biểu thức:

° Lời giải:

– Ta có: |2x – 2| ≥ 0 ⇔ -|2x – 2| ≤ 0 ⇔ 5 -|2x – 2| ≤ 5

Dấu “=” xảy ra khi |2x – 2| = 0 ⇔ 2x – 2 = 0 ⇔ x = 1

Vậy Amax = 5 ⇔ x = 1

* Ví dụ 2: Tìm GTNN của biểu thức: A = |9 – x| – 3

° Lời giải:

– Ta có: |9 – x| ≥ 0 ⇔ |9 – x| ≥ 0 ⇔ |9 – x| – 3 ≥ -3

Dấu “=” xảy ra khi |9 – x| = 0 ⇔ 9 – x = 0 ⇔ x = 9

Vậy Amin = -3 ⇔ x = 9

Như vậy, các bài toán trên dựa trên các biến đổi về dạng tổng hoặc hiệu của biểu thức không âm (bình phương, trị tuyệt đối,…) và hằng số để tìm ra lời giải. Thực tế, còn nhiều bài toán phải sử dụng bất đẳng thức Cauchy (Cosi) cho hai số a, b không âm: (Dấu “=” xảy ra khi a =b) hay áp dụng bất đẳng thức chứa dấu giá trị tuyệt đối: (dấu “=” xảy ra khi và chỉ khi a.b≥ 0); , (dấu “=” xảy ra khi và chỉ khi a.b≤ 0).

* Ví dụ 1: Tìm giá trị nhỏ nhất của biểu thức:

° Lời giải:

– Vì a,b>0 nên

– Áp dụng bất đẳng thức Cauchy (còn gọi là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân AM-GM (Arithmetic Means – Geometric Means)).

Dấu “=” xảy ra khi

– Kết luận: Giá trị nhỏ nhất của M = 2 ⇔ a = b.

* Ví dụ 2: Tìm giá trị nhỏ nhất của biểu thức:

° Lời giải:

– Vì a > 1 nên a – 1 > 0 ta có:

[Áp dụng bất đẳng thức Cauchy ta được]

Dấu “=” xảy ra khi

Đối chiếu điều kiện a > 1 nên chỉ nhận a = 2; loại a = 0.

– Kết luận: GTNN của M = 3 ⇔ a = 2.

Điều hướng bài viết

❮ Previous Post: Lý giải bắp chân to và cách khắc phục để có đôi chân thon gọn | Medlatec
Next Post: Cung mọc Nhân Mã: Tổng quan và sự kết hợp với 12 cung Mặt Trời – Revelogue ❯

You may also like

Tin tổng hợp
3 trò chơi âm nhạc cho trẻ mầm non hấp dẫn nhất
Tháng Một 28, 2022
Tin tổng hợp
Bí ẩn của tài liệu giảng dạy tiếng Anh cho giáo dục phổ thông mới
Tháng Năm 21, 2022
Tin tổng hợp
ủy ban văn hóa
Tháng Năm 22, 2022
Tin tổng hợp
Ảnh chụp trước gương che mặt nữ đẹp nhất
Tháng Sáu 5, 2022

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Bài mới

  • Mẹo chọn tài liệu, giáo trình du lịch cho giảng viên ở Hải Phòng
  • Du học nhóm ngành quản trị kinh doanh tại Singapore: Những điều bạn cần biết
  • Lộ Trình Học Tiếng Anh Cho Người Mới Bắt Đầu
  • Hướng dẫn chọn mua kim cương tròn hoàn hảo
  • Học Tiếng Anh Có Quan Trọng Không? Những Lưu Ý Khi Học Tiếng Anh

Chuyên mục

  • Giảng dạy
  • Hướng dẫn
  • Tài liệu Tiếng Anh
  • Tài liệu Toán học
  • Tin tổng hợp
DMCA.com Protection Status

Link Tài Liệu Giáo Dục

  • Về Futurelink
  • Tài liệu Tiếng Anh
  • Tài liệu Toán Học

Follow me

  • Facebook
  • YouTube
  • Twitter
  • LinkedIn
  • 500px

Copyright © 2023 Link Tài Liệu Giáo Dục.

Theme: Oceanly News by ScriptsTown